Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein.

نویسندگان

  • Stéphane Benoit
  • Robert J Maier
چکیده

The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capable of binding one nickel ion per dimer. Introduction of an extra copy of ureE into the chromosome of mutants carrying mutations in the Ni maturation proteins HypA and HypB resulted in partial restoration of urease activity (up to 24% of the wild-type levels). Fusion proteins of UreE with increased ability to bind nickel were constructed by adding histidine-rich sequences (His-6 or His-10 to the C terminus and His-10 as a sandwich fusion) to the UreE protein. Each fusion protein was overexpressed in E. coli and purified, and its nickel-binding capacity and affinity were determined. Each construct was also expressed in wild-type H. pylori and in hypA and hypB mutant strains for determining in vivo urease activities. The urease activity was increased by introduction of all the engineered versions, with the greatest Ni-sequestering version (the His-6 version) also conferring the greatest urease activity on both the hypA and hypB mutants. The differences in urease activities were not due to differences in the amounts of urease peptides. Addition of His-6 to another expressed protein (triose phosphate isomerase) did not result in stimulation of urease, so urease activation is not related to the level of nonspecific protein-bound nickel. The results indicate a correlation between H. pylori urease activity and the nickel-sequestering ability of the UreE accessory protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition.

BACKGROUND The gastric pathogen Helicobacter pylori relies on nickel-containing urease and hydrogenase enzymes in order to colonize the host. Incorporation of Ni(2+) into urease is essential for the function of the enzyme and requires the action of several accessory proteins, including the hydrogenase accessory proteins HypA and HypB and the urease accessory proteins UreE, UreF, UreG and UreH. ...

متن کامل

Is the Nickel-Dependent Urease Complex of Cryptococcus the Pathogen’s Achilles’ Heel?

The nitrogen-scavenging enzyme urease has been coopted in a variety of pathogenic organisms as a virulence factor, most notoriously to neutralize stomach acid and establish infection by the gastric pathogen Helicobacter pylori. The opportunistic fungal pathogen Cryptococcus neoformans also utilizes urease as a virulence factor, only in this case to invade the central nervous system (CNS) via th...

متن کامل

Interactions among the seven Helicobacter pylori proteins encoded by the urease gene cluster.

Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid a...

متن کامل

Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG.

The persistence of Helicobacter pylori in the hostile environment of the human stomach is ensured by the activity of urease. The essentiality of Ni(2+) for this enzyme demands proper intracellular trafficking of this metal ion. The metallo-chaperone UreE promotes Ni(2+) insertion into the apo-enzyme in the last step of urease maturation while facilitating concomitant GTP hydrolysis. The present...

متن کامل

Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus.

Klebsiella aerogenes UreE, one of four accessory proteins involved in urease metallocenter assembly, contains a histidine-rich C terminus (10 of the last 15 residues) that is likely to participate in metal ion coordination by this nickel-binding protein. To study the function of the histidine-rich region in urease activation, ureE in the urease gene cluster was mutated to result in synthesis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 16  شماره 

صفحات  -

تاریخ انتشار 2003